
A Strong Duality Principle for
Total Variation and Equivalence Couplings

Adam Quinn Jaffe

McGill DDC Seminar
February 20, 2024



I. Some vignettes



Given probability measures µ1, µ2 on (X,F), a coupling of µ1, µ2 is a
probability measure µ̃ on (X ×X,F ⊗F) with µ̃ ◦ π−1

i = µi for i = 1, 2.
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For fixed probability
measures µ1, µ2, we
write Π(µ1, µ2) for
the space of all
couplings of µ1 and
µ2, which is a convex
subset of P(X ×X).



Theorem (folklore)

If (X,F) is a standard Borel space and ∆ = {(x, x) : x ∈ X} denotes
the diagonal, then for all probability measures P, P ′ on (X,F), the
following are equivalent:

(i) P (A) = P ′(A) for all A ∈ F .

(ii) There exists a coupling P̃ ∈ Π(P, P ′) satisfying P̃ (∆) = 1.

Exact history is hard to track down (Lindvall 2002).



Theorem (Thorisson 1996)

If G is a locally compact Polish group acting measuably on a Polish
space X, with EG ⊆ X ×X its orbit equivalence relation and IG ⊆ F
its invariant σ-algebra, then for all Borel probability measures P, P ′ on
X, the following are equivalent:

(i) P (A) = P ′(A) for all A ∈ IG.
(ii) There exists a coupling P̃ ∈ Π(P, P ′) satisfying P̃ (EG) = 1.

Extends prior work for shift invariance (Aldous-Thorisson 1993).



Theorem (Griffeath 1974, Pitman 1976)

If E1 :=
⋃

n∈N{(x, x′) : (xn, xn1 , . . .) = (xn, xn+1, . . .)} denotes the
equivalence relation of eventual equality and T :=

⋂
n∈N σ(xn, xn+1, . . .)

denotes the tail σ-algebra on RN, then for all Borel probability measures
P, P ′ on RN, the following are equivalent:

(i) P (A) = P ′(A) for all A ∈ T .

(ii) There exists a coupling P̃ ∈ Π(P, P ′) satisfying P̃ (E1) = 1.
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If E1 :=
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n∈N{(x, x′) : (xn, xn1 , . . .) = (xn, xn+1, . . .)} denotes the
equivalence relation of eventual equality and T :=

⋂
n∈N σ(xn, xn+1, . . .)

denotes the tail σ-algebra on RN, then for all Borel probability measures
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(i) P (A) = P ′(A) for all A ∈ T .
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Theorem (?)

If (X,F) is a standard Borel space and (E,G) is a certain pair where
E ⊆ X ×X is a sufficiently nice equivalence relation on X and G is a
sufficiently nice sub-σ-algebra of F then for all probability measures
P, P ′ on (X,F), the following are equivalent:

(i) P (A) = P ′(A) for all A ∈ G.
(ii) There exists a coupling P̃ ∈ Π(P, P ′) satisfying P̃ (E) = 1.



II. Stochastic processes



Brownian motion is a Borel probability measure W on C0([0,∞);R)
which in some sense represents the canonical distribution of a random
continuous function.

B

(Universal scaling limit of centered random walks on R.)



Brownian motion with drift θ ∈ R is the Borel probability measure W θ

on C0([0,∞);R) given by the pushforward of W by the map
T θ({B(t)}t≥0) := {B(t) + θt}t≥0.

Each T θ gives rise to a coupling W̃ ∈ Π(W,W θ) defined as the
pushforward of W by (id, T θ). But this coupling is not very interesting.



Theorem (Ernst-Kendall-Roberts-Rosenthal 2019)

For any θ ∈ R, there exists W̃ ∈ Π(W,W θ) satisfying W̃ (E0+) = 1,
where

E0+ :=
⋃
t>0

{(B,B′) : {Bs}0≤s≤t = {B′
s}0≤s≤t}

is called the germ equivalence relation.
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Definition

Say that a pair of Borel probability measures (P, P ′) on C0([0,∞);R)
has the germ coupling property (GCP) if there exists P̃ ∈ Π(P, P ′) with
P̃ (E0+) = 1.

This is a form of “local equivalence” of two stochastic processes.

Know that (W,W θ) has the GCP for all θ ∈ R.

Which other pairs have the GCP?
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III. Problem statement



Notation:

▶ (X,F) standard Borel space,

▶ P(X,F) space of probability measures on (X,F),

▶ Π(P, P ′) space of couplings of P, P ′ ∈ P(X,F),

▶ E equivalence relation on X, and

▶ G sub-σ-algebra of F .



Definition

Say (E,G) is strongly dual if E is Borel and if we have

max
A∈G

∣∣P (A)− P ′(A)
∣∣ = min

P̃∈Π(P,P ′)
(1− P̃ (E))

for all P, P ′ ∈ P(X,F). (Here, “max” and “min” assert that the
supremum and infimum are achieved.)

Which pairs (E,G) are strongly dual?

We have some useful reductions.



Definition

Say (E,G) is weakly dual if E is Borel and if we have

max
A∈G

∣∣P (A)− P ′(A)
∣∣ ≤ inf

P̃∈Π(P,P ′)
(1− P̃ (E))

for all P, P ′ ∈ P(X,F).

Lemma

If (E,G) is strongly dual then (E,G) is weakly dual.



Definition

Say (E,G) is quasi-strongly dual if, for all P, P ′ ∈ P(X,F), the
following are equivalent:

(i) P (A) = P ′(A) for all A ∈ G.
(ii) There exists a coupling P̃ ∈ Π(P, P ′) satisfying P̃ (E) = 1.

Lemma

(E,G) is strongly dual iff (E,G) is quasi-strongly dual and E is Borel.



Definition

For an equivalence relation E on X, we write

E∗ := {A ∈ F : ∀(x, x′) ∈ E(x ∈ A ⇔ x′ ∈ A)}

for the E-invariant σ-algebra.

Lemma

If (E,G) is strongly dual for some G, then (E,E∗) is strongly dual.

Say that E is strongly dualizable if (E,E∗) is strongly dual.

Which Borel equivalence relations E are strongly dualizable?
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IV. Optimal transport



Suppose that the supply of some good in Rk is distributed as P , and
that the demand is distributed as P ′, and that we need to match
supply to demand while minimizing the total transport cost.

This can be formulated as the Monge problem:

inf
T :Rk→Rk

P◦T−1=P ′

ˆ
Rk

∥x− T (x)∥2dP (x).

Unfortunately, sometimes solutions do not exist.

Instead one can consider the Kantorovich problem

min
P̃∈Π(P,P ′)

ˆ
Rk

∥x− x′∥2dP̃ (x, x′)

which is analytically much nicer:



Properties of Kantorovich problem:

Always has a minimizer

Convex optimization problem

Equivalent to the Kantorovich dual problem

max
ϕ:Rk→R
ϕ convex

(ˆ
Rk

ϕdP +

ˆ
Rk

ϕ∗dP ′
)

meaning they have the same optimal value.



Many nice properties of the Kantorovich problem hold for a suitable
cost function c : X ×X → R

min
P̃∈Π(P,P ′)

ˆ
X
c(x, x′)dP̃ (x, x′)

on a Polish space X (Rachev-Rüschendorf 1998, Villani 2009).

Notice that our problem is exactly a Kantorovich problem for
c = 1− 1E , meaning: free to move within an equivalence class, and
constant cost to move between equivalence classes.



E



If E is closed in X ×X, then we can apply existing results on
Kantorovich duality to deduce strong duality.

However, existing results require c to be lower semi-continuous which is
equivalent to E being closed in X ×X, so we cannot generalize past
this.

This is not enough, since most of the interesting examples in
probability, we need to allow E to be Fσ in X ×X.

Need new tools!



V. Results



Theorem (AQJ)

Every smooth equivalence relation is strongly dualizable.

Idea of proof: Do the folklore coupling in (Ω, E∗) then “smooth things
over” with conditional expectations.
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A key step along the way is the following:

Lemma (AQJ)

The following are equivalent:

(i) E is smooth.

(ii) E∗ is countably generated.

(iii) E ∈ E∗ ⊗ E∗.



Since E1 is strongly dualizable, we know that smoothness is not
necessary.

Instead, we have the following closure result:

Theorem (AQJ)

A countable increasing union of strongly dualizable equivalence
relations is strongly dualizable.

Idea of proof: Apply strong duality, and iterate.
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Corollary (AQJ)

Hypersmooth equivalence relations are strongly dualizable.

Corollary (AQJ)

Borel orbit equivalence relations (of locally compact Polish groups
acting measurably on standard Borel spaces) are strongly dualizable.

These results establish strong dualizability for most Borel equivalence
relations occurring in probability.



Back to our motivation from stochastic processes:

Corollary (AQJ)

A pair of probability measures (P, P ′) on C0([0,∞);R) has the germ
coupling property iff P (A) = P ′(A) for all A ∈ F0+, where

F0+ :=
⋂
t>0

σ(xs : 0 ≤ s < t)

is the germ σ-algebra.

In stochastic calculus we already have many tools to study the germ
σ-algebra. (Blumenthal zero-one law, Girsanov theorem, etc.)



Now we have some intereresting probabilistic consequences:s

Theorem (AQJ)

If µ : R → R and σ : R → [0,∞) are Lipschitz continuous and x0 ∈ R is
arbitrary, then the strong solution X of the SDE{

dXt = µ(Xt)dt+ σ(Xt)dBt for 0 ≤ t ≤ 1

X0 = x0,
(1)

forms the GCP with a Brownian motion if and only if σ ≡ 1 on a
neighborhood of x0.



Open questions:

▶ Is every Borel equivalence relation strongly dualizable?

▶ What is the complexity of the GCP relation (or TCP relation) on
P(C0([0,∞);R)), or special subsets thereof?

▶ Is there a useful dual formulation for coupling problems for other
relations? (AQJ-Raban 2024+)

▶ Are there concrete characterizations of the GCP for other classes
of Markov processes? (Chu-AQJ 2024+, Hummel-AQJ 2024+)



Thank you!
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